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Cycling presents a compelling solution for promoting personal health and environmental 

well-being, particularly for short-distance travel. Despite its numerous advantages, cycling uptake 

in the United States remains disproportionately low, primarily due to safety concerns. Traditional 

frameworks for assessing cyclist stress are hindered by their impracticality and inability to provide 

real-time evaluations. Self-report surveys and physiological measurements offer alternative 

approaches but suffer from limitations such as retrospective reporting biases and accessibility 

challenges, respectively. This project introduces CyclistAI, a novel smartphone-based cyclist 

stress assessment model that leverages context sensing. By combining Convolutional Neural 

Network (CNN) and Long Short-Term Memory (LSTM) techniques, CyclistAI aims to provide 

real-time stress assessment for cyclists. Challenges in dataset annotation due to safety concerns 

are addressed through simulation-based data generation. Subsequent Domain Adaptation using 

Contrastive Learning bridges the simulation-to-reality gap and ensures the model’s efficacy in 

real-world scenarios. In-field testing of CyclistAI demonstrates promising results, showcasing its 

potential as a pioneering stress assessment tool. Furthermore, this project proposes utilizing 

aggregated assessment results to create stress distribution maps, facilitating informed decision-

making for urban planners to enhance cycling infrastructure and promote safer, more sustainable 

transportation environments. 
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Chapter 1: INTRODUCTION 

Cycling represents a beneficial mode of transportation, fostering both personal health and 

environmental well-being, especially for short distances. By opting for two wheels over four, 

individuals contribute to reduced vehicle emissions, improved air quality, and decreased traffic 

congestion. Additionally, cycling promotes physical activity, enhancing cardiovascular health 

and mental well-being. Despite these advantages, its uptake remains disproportionately low in 

the United States. Only 1% of trips are made on bicycles, even though almost 40% of trips are 

two miles or less, which is a reasonable distance for cycling [1]. The primary deterrent to 

widespread cycling adoption is the prevailing perception of lack of safety [2]. 

Transportation researchers have dedicated significant efforts to understanding the comfort 

and stress experienced by cyclists over the years. Various classic assessment frameworks, such 

as Bicycle Level of Service (BLOS) [3] and Level of Traffic Stress (LTS) [4], have been 

established to quantify comfort or stress based on a comprehensive range of factors, including 

bike lane width, traffic volume, speed, and road surface quality. While these frameworks 

provide valuable insights, they endeavor to exhaustively enumerate and incorporate various 

contextual factors to derive the stress level, which is impractical to implement in real-world 

scenarios. 

Alternatively, researchers have explored methods that involve self-report surveys [7, 9], 

where cyclists provide feedback on their perceived stress levels after each ride. While these 

surveys attempt to capture cyclists’ experiences, they often fail to capture the “in the moment” 

stress cyclists face during their journeys due to the retrospective nature of self-report surveys, 

which rely on cyclists’ memory and perception of stress after completing their rides. Moreover, 

the delay between the cycling experience and the survey response may lead to recall biases or 

inaccuracies in reporting, and such surveys can incur substantial costs [15]. 

Recent research has focused on studying cyclist stress through human physiology, using 

biomarkers such as heart rate [18, 5], and heart rate variability [20, 22]. Because of their reliance 

on specialized sensors that are not widely accessible, these methods are best suited for small-

scale studies. Although heart rate can be monitored with common wearables, their limited 

market penetration in the US [24] suggests accessibility challenges for many cyclists. As a 

result, the practical use of physiological techniques in studying cyclist stress remains limited. 
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Cyclist stress is widely understood to be significantly impacted by traffic and environmental 

factors, a well-documented phenomenon in civil engineering research. Meanwhile, ongoing 

research in the field of mobile devices emphasizes the potential for using a variety of smartphone 

sensors to collect such contextual data [25, 26]. Inspired by these insights, CyclistAI, a novel 

smartphone-based cyclist stress assessment model that leverages context sensing, is developed. 

The model comprises a combination of a Convolutional Neural Network (CNN) and Long 

Short-Term Memory (LSTM). Training this model is straightforward with access to a sizable, 

annotated dataset. However, obtaining a well annotated dataset poses significant challenges in 

this case due to safety concerns. Cyclists may need to continuously report their perceived stress 

as labels for smartphone sensor readings, potentially diverting their attention and posing safety 

hazards. To address this issue, creating the annotated dataset using a bike simulator is proposed 

to train the stress assessment model. However, it’s important to note that a model trained with 

simulation data may not be directly applicable to real-world cycling stress assessment due to 

differences between controlled lab environments and actual physical streets, leading to 

variations in stress perceptions. To bridge this gap, Cross-domain contrastive learning 

framework for domain adaptation is leveraged. 

To evaluate CyclistAI, a prototype is created, and in-field testing is conducted in a real-

world environment. The evaluation results indicate that CyclistAI achieves an average accuracy 

of 89%. It consistently performs well across diverse traffic and environmental conditions as a 

pioneering cyclist stress assessment model that relies solely on smartphone sensor readings. 

The ultimate objective is to determine the stress distribution on roads and streets within a 

specific geographic area (such as a city, neighborhood, or region) by aggregating the assessment 

results from a group of proprietary cyclists’ smartphone sensor readings as they bike through 

that area. As an illustration, in Figure 12, a visualized heat map of stress distribution over an 

area of interest is provided. It represents an aggregated result of the stress assessment from all 

participants. It will enable cyclists to select routes with low stress levels for their commute. Such 

a map will additionally benefit city planners, enabling them to identify areas requiring cycling 

infrastructure improvements. By analyzing these maps, city planners can prioritize locations for 

implementing measures such as adding dedicated bike lanes, improving road conditions, or 

reducing traffic congestion.  



3 

 

Chapter 2: RELATED WORK 

The existing methods for assessing cyclist stress can be broadly classified into the following 

three categories: 

Stress-rating frameworks: These methods quantify the cyclist stress by evaluating 

various traffic and environmental conditions [4, 39, 40], utilizing parameters such as bike lane 

width, traffic volume, road surface quality, and proximity to intersections. Bicycle Level of 

Service (BLOS) [3] employs a linear regression model with over ten parameters for estimating 

cyclist satisfaction. Similarly, Level of Traffic Stress (LTS) [4] proposes a function to model 

cyclists’ stress levels. These methods establish the relationship between cyclist stress and 

environmental conditions through mathematical formulas, aiming to capture nuanced 

interactions between different factors. Recent advancements in research have explored both 

implicit and explicit relationships using artificial intelligence techniques [6, 11]. For instance, 

Huertas et al. [10] develop a stress classification model using unsupervised clustering and 

multinomial logistic regression. Professional equipment is typically used to measure road 

parameters in these models, and assessments are limited to the measured route. 

Psychophysiology-based methods: Cyclist stress is assessed through physiological data 

analysis, including heart rate [5, 22], electrodermal activity [18], galvanic skin response [21], 

and respiration rate [16]. These methods offer direct insights into cyclists’ psycho-physiological 

states. However, their widespread use is hindered by the reliance on costly research-grade 

sensors. While consumer-grade devices like smartwatches can monitor heart rate, their US 

adoption rate is only approximately 11% [24], particularly low among underserved populations. 

Thus, despite providing detailed information, practical application in large-scale cyclist stress 

assessments is limited by sensor availability and adoption rates. 

Cognitive workload during cycling can be assessed using eye-tracking technology or 

physiological measures like pupillometry to gauge mental effort and information processing 

demands [42]. Various scales and instruments, such as the State-Trait Anxiety Inventory (STAI) 

[44], measure anxiety levels in cyclists. While these methods offer insights into cyclist stress, 

they often require specialized training for accurate interpretation, and the necessary tools may 

not be readily available. 
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Self-reported stress assessment: Historically, cyclist stress levels have been assessed 

using self-report methodologies [7, 9]. These methods typically involve direct surveys [8] or 

participants rating their stress levels after viewing videotaped depictions of diverse on-street traffic 

scenarios. However, despite their widespread use, these approaches can be resource-intensive and 

may fall short in capturing the real-time experience of cyclists [15]. Additionally, the retrospective 

nature of these methods may introduce biases and inaccuracies in reporting.  
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Chapter 3: BACKGROUND AND MEASUREMENT STUDY 

3.1 Background 

Over the past decade, studies have demonstrated that environmental and traffic conditions 

significantly influence a cyclist’s stress levels. Factors such as road surface quality, traffic 

density, transportation infrastructure, air quality, illumination, and weather conditions all play a 

major role. Cyclists often face challenges such as navigating potholes, uneven roads, and debris 

on subpar road surfaces, which can lead to increased stress levels. Furthermore, they must 

always remain vigilant for potential hazards, further contributing to their stress. Research in 

civil engineering has consistently shown that cyclists experience heightened stress when riding 

in heavy traffic, as they perceive a greater risk of accidents in congested areas. Fortunately, 

many smartphone sensors are now capable of capturing the vast array of contextual information 

mentioned above. Previous studies [25] have utilized smartphone accelerometers to detect road 

irregularities. These studies revealed a correlation between noise levels, audio events captured 

by smartphone microphones, and nearby traffic volumes [27]. Furthermore, smartphones 

equipped with ambient light and GPS sensors can effectively monitor street illumination 

conditions [28]. 

These combined pieces of evidence encourage us to leverage smartphone sensors to capture 

contextual information about cyclists’ surroundings while they ride through urban roads, with 

the final objective of assessing their stress levels. 

3.2 Measurement Study 

A preliminary measurement study is carried out to examine the feasibility of this concept. 

3.2.1 Measurement Setup 

A smartphone app was developed for collecting sensor data to record the cyclist’s 

environmental context, including road conditions and traffic noise, utilizing two types of 

sensors: IMU and microphone. Six participants were enlisted to cycle around the campus, with 

their smartphones affixed to the handlebars. Bicycle maneuvers were indicated by IMU 

measurements; however, these were heavily influenced by road conditions. At regular 5-second 

intervals, participants were prompted by the smartphone app to verbally report their perceived 

stress levels, categorized as low, medium, or high. The audio captured by the microphone was 
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subsequently transcribed by human auditors into labels corresponding to the sensor readings. 

To address the potential interference of verbal reports with the microphone’s recording of traffic 

conditions, a voice activity detection algorithm [59] was employed to identify and remove the 

stress report segments from the recorded audio tracks during post-processing. Subsequently, 

statistical analysis was conducted to explore the potential relationship between instantaneous 

sensor readings and the associated cyclist-reported stress levels. It’s important to note that the 

entire study in this work received approval from the Institutional Review Board (IRB). 

3.2.2 Statistical Analysis 

 

 

Figure 1: Boxplot of absolute amplitude under different stress levels. 

Figure 1 depicts the absolute amplitude across various stress levels within a randomly selected 

audio sample. Notably, as stress levels escalate, there is a corresponding rise in amplitude. This 

suggests that in noisy and busy environments, cyclists are more likely to experience elevated 

stress levels. 

Figure 2 demonstrates the distribution of IMU readings collected from the accelerometer and 

gyroscope across three stress levels. The data have been aggregated from measurements across 

all axes (x, y, z) to create scalar values, representing total acceleration and angular velocity. The 

distribution for each stress level is based on 360 five-second signal segments from all six 

participants. There are clear correlations: increased reported stress levels are typically correlated 

with increased acceleration and angular velocity in the measurements. 



7 

 

 

 

 (a) Acceleration from accelerometer (b) Angular velocity from gyroscope 

Figure 2: Boxplot of IMU readings 

The findings of the measurement study show encouraging results. There is a notable 

correlation between smartphone sensor readings and the stress levels experienced by cyclists. 

During periods of high stress, such as navigating through heavy traffic or challenging terrain, 

audio recordings may capture elevated background noise levels, including honking cars or loud 

engine revving. These audio cues reflect the heightened environmental stimuli and increased 

cognitive load experienced by the cyclist. On the other hand, in low-stress environments, such 

as quiet residential streets or dedicated bike paths, audio recordings may exhibit minimal 

background noise. This correlation suggests that ambient noise levels can indicate the level of 

stress experienced by the cyclist during their ride. 

Different stress levels also exhibit distinctive patterns in the accelerometer readings. In high-

stress situations, characterized by heavy traffic, cyclists experience frequent starts and stops, 

leading to rapid fluctuations in acceleration. Conversely, during low-stress periods, such as in 

light traffic conditions, cyclists enjoy smoother rides with consistent acceleration and minimal 

disturbances. 

Similar to accelerometer readings, gyroscope data reflects varying stress levels encountered 

by cyclists. In high-stress scenarios, comprising factors like high traffic, poor road conditions 

and adverse weather, cyclists must make frequent adjustments to maintain balance, resulting in 

significant fluctuations in gyroscope readings. In contrast, during low-stress conditions, such as 



8 

 

on well-paved roads with minimal obstacles, gyroscope adjustments are infrequent, leading to 

stable readings. 

 

 

Figure 3: Bike Simulator 

3.2.3 Data Collection in Simulation Environment 

Encouraged by these observations, the goal is to develop an advanced deep learning model 

that can effectively translate the sensor readings into cyclist stress levels automatically. 

In order to develop a model that can adapt to different traffic and infrastructural situations 

in city streets, an extensive labeled dataset with annotated stress levels is essential. However, 

there are a few safety issues with data annotation. Continuous reporting of perceived stress by 

cyclists which acts as labels for the smartphone’s sensor readings may divert their attention and 

put them in danger as they bike in a busy metropolitan area. This is more likely in scenarios 

when there is a lot of traffic. This approach is useful for collecting a small quantity of data under 

controlled conditions, but it is not sufficient to obtain the large dataset needed to effectively 

train a deep learning model. To address this issue, annotated smartphone data is collected from 

an immersive simulator environment as shown in Figure 3.  
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Chapter 4: BASIC CYCLIST STRESS ASSESSMENT MODEL 

In order to address the complexities of cyclist stress assessment, the basic model proposed 

in this project relies on a fusion of Convolutional Neural Networks and Long Short-Term 

Memory Networks. To fully comprehend the architectural intricacies and theoretical 

underpinnings of this model, it is imperative to delve into the realm of deep learning. 

 

4.1 Deep Learning 

Deep learning [31], a subset of machine learning, has revolutionized various fields with its 

ability to process complex data and extract meaningful patterns for prediction and decision-

making. In recent years, deep learning techniques have gained widespread popularity and have 

been applied across diverse domains, including computer vision, natural language processing, 

healthcare, finance, and autonomous systems. 

At its core, deep learning seeks to mimic the human brain’s neural networks to process and 

interpret data. By utilizing interconnected layers of neurons, known as artificial neural networks, 

deep learning models can automatically learn intricate representations of input data, enabling 

them to perform tasks such as pattern recognition, classification, regression, and anomaly 

detection. 

One of the key advantages of deep learning lies in its capability to handle large volumes of 

unstructured data efficiently. Unlike traditional machine learning algorithms that rely on 

handcrafted features, deep learning models can automatically learn hierarchical representations 

of data directly from raw inputs. This ability is particularly advantageous in tasks where 

manually designing features is impractical or infeasible, such as image and speech recognition. 

4.1.1 Artificial Neural Networks (ANNs) 

Artificial Neural Networks are computational models inspired by the structure and function 

of the human brain [14]. They consist of multiple layers of interconnected neurons, with each 

neuron serving as the fundamental processing unit. These networks process information through 

a series of weighted connections, where inputs are received, combined with corresponding 

weights, summed, and then passed through an activation function to produce an output. ANNs 

typically comprise an input layer for receiving initial data, one or more hidden layers responsible 
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for learning representations of the data, and an output layer for producing final predictions or 

classifications. This architectural layout is illustrated in Figure 4. 

 

 

Figure 4: Artificial Neural Network Architecture 

 

Training an ANN involves two primary processes: 

1. Forward Propagation: This process entails sequentially computing the output of each 

neuron in each layer until reaching the output layer. Mathematically, the output 𝑧𝑗
(𝑙) of a 

neuron j in layer l can be represented as: 

𝑧𝑗
(𝑙) = ∑ 𝑤𝑖𝑗

(𝑙)
𝑥𝑖

(𝑙−1)
+ 𝑏𝑗

(𝑙)

𝑛

𝑖=1
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where 𝑤𝑖𝑗
(𝑙) denotes the weight associated with the connection between neuron i in layer 

l-1 and neuron j in layer l, 𝑥𝑖
(𝑙−1) represents the output of neuron i in layer l-1, and 𝑏𝑗

(𝑙)
 is 

the bias term for neuron j in layer l. The weights of the network are initialized randomly at 

the beginning. The output 𝑧𝑗
(𝑙) then passes through an activation function, 𝑓(𝑧) introducing 

non-linearity. 

𝑎𝑗
(𝑙)

= 𝑓(𝑧𝑗
(𝑙)

) 

Common activation functions include sigmoid, ReLU, and tanh. Each neuron in subsequent 

layers computes its output, which serves as input for neurons in the next layer. The output 

of the final layer represents the network’s predictions. 

 

2. Backpropagation: This process involves refining the learnable parameters (i.e. weights) 

of the previous layers through iterative adjustments. It minimizes prediction errors by 

updating weights based on computed gradients. For each input sample, a forward pass is 

performed through the network, computing the output of each neuron in each layer using 

the current weights and activation functions. After obtaining the predicted output of the 

network, the loss between the predicted output 𝑦𝑝𝑟𝑒𝑑  and the true output 𝑦𝑡𝑟𝑢𝑒  is calculated 

using a chosen loss function. L = loss (𝑦𝑡𝑟𝑢𝑒, 𝑦𝑝𝑟𝑒𝑑). 

 

Now, the weights are updated using gradient descent, iterating through the network 

weights until convergence or a stopping criterion is met. The weight update rule is as 

follows:  

𝑤𝑖𝑗
(𝑙)

= 𝑤𝑖𝑗
(𝑙)

− 𝛼
𝜕𝐿

𝜕𝑤𝑖𝑗

(𝑙) 

where α is the learning rate which controls the optimization step size. 

The gradient of the loss function with respect to the weight 𝑤𝑖𝑗
(𝑙)

 connecting neuron i in 

layer l-1 to neuron j in layer l can be expressed using the chain rule as: 

𝜕𝐿

𝜕𝑤𝑖𝑗

(𝑙) =  
𝜕𝐿

𝜕𝑎𝑗

(𝑙) .
𝜕𝑎𝑗

(𝑙)

𝜕𝑧𝑗

(𝑙) .
𝜕𝑧𝑗

(𝑙)

𝜕𝑤𝑖𝑗

(𝑙) 
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where 𝑎𝑗
(𝑙)

 is the activation of neuron j in layer l, and  𝑧𝑗
(𝑙)

 is the weighted sum of inputs 

of neuron j in layer l. This weight update rule adjusts the weights based on the gradient of 

the loss function with respect to each weight, thus guiding the optimization process to 

minimize the error. 

By iteratively employing both forward propagation and backpropagation, the network’s 

weights are progressively adjusted to minimize the loss function, thereby enhancing the 

network’s performance on the designated task. 

4.1.2 Long Short-Term Memory (LSTM) 

 

Figure 5: Long Short-Term Memory Architecture 

Long Short-Term Memory networks [32] constitute a pivotal advancement in the domain of 

sequential or time series data analysis, adept at capturing long-range dependencies and 

mitigating the vanishing gradient problem [60]. At the core of LSTM architecture lie LSTM 

cells, organized sequentially. Each LSTM cell comprises critical components, including the cell 

state, three multiplicative gates-input, forget, and output gates-constructed using neural network 

layers. These gates, along with activation functions like hyperbolic tangent or sigmoid, regulate 

the flow of information into, out of, and within the cell state, facilitating selective storage or 

discard of information over extended sequences. The cell state (Ct) represents the long-term 
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memory of the network, while the hidden state (ℎ𝑡) captures relevant information from the input 

sequence at a given time step. 

 

LSTMs process sequential or time series data, where 𝑥𝑡 represents the input at time step t. 

Mathematically, LSTM operations are encapsulated in equations governing state transitions as 

shown below:  

• The forget gate (𝑓𝑡) determines which information from the previous cell state (Ct−1) 

should be discarded. It computes 𝑓𝑡 = σ (𝑊𝑓 . [ht−1, 𝑥𝑡] + bf), where σ is the sigmoid 

activation function, 𝑊𝑓 is the weight matrix for the forget gate, and 𝑏𝑓 is the bias vector. 

• The input gate (𝑖𝑡) decides which new information (�̃�t) should be added to the cell state. 

It computes it = σ (𝑊𝑖 . [ht−1, 𝑥𝑡] + bi) where 𝑊𝑖 is the weight matrix for the input gate, 

and bi is the bias vector. 

• The candidate cell state (�̃�t) represents the new information proposed to be added to the 

cell state. It computes �̃�t = σ (𝑊𝐶 . [ht−1, 𝑥𝑡] + 𝑏𝐶), where 𝑊𝐶 is the weight matrix for the 

candidate cell state, and 𝑏𝐶  is the bias vector. 

• The output gate (𝑜𝑡) controls the flow of information from the current cell state to the 

hidden state (ℎ𝑡). It computes 𝑜𝑡  = σ (𝑊𝑜 . [ht−1, 𝑥𝑡] + 𝑏𝑜), where Wo is the weight matrix 

for the output gate, and 𝑏𝑜  is the bias vector. 

• The cell state (Ct) and hidden state (ℎ𝑡) are updated using equations Ct = 𝑓𝑡 . Ct−1+ 𝑖𝑡 . �̃�t 

and ℎ𝑡 = 𝑜𝑡 . tanh (Ct) respectively. This hidden state serves as the output for time step t. 

These equations detail how information is processed and updated within the LSTM unit at 

each time step. Through this intricate interplay of gating mechanisms and memory management, 

LSTMs excel in various sequential learning tasks, from natural language processing to time 

series forecasting, cementing their status as a cornerstone in deep learning architectures. 
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4.1.3 Convolutional Neural Networks (CNN) 

CNNs [35] are a type of artificial neural network particularly well-suited for processing 

structured grid-like data, such as images or time series data. They have been highly successful 

in various tasks, including image recognition, object detection, and natural language processing. 

When it comes to sensor time series data, CNNs can be adapted to effectively extract features 

and patterns, making them suitable for a wide range of applications, including time series 

analysis, signal processing, and natural language processing. 

4.1.4 1-Dimensional Convolutional Neural Networks (1D CNN) 

1D CNNs [36] are tailored to capture patterns and temporal dependencies within one-

dimensional sequential or time-series data. The main components of a 1D CNN are presented 

below: 

 

Figure 6: 1D Convolution operation (kernel size=3, number of kernels=1) 

1. Input Layer: The initial layer of the network receives the one-dimensional sequential data, 

which could be signals, time series, audio, or text. 

2. Convolutional Layers: These layers apply one-dimensional convolutions to the input data 

as illustrated in Figure 6. Each convolutional layer consists of multiple filters or kernels 

that convolve over the input sequence to extract local patterns and features. The output of 

each convolution operation forms a feature map, which represents the presence of certain 

features at different positions in the input sequence. 
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3. Activation Layers: Activation functions [19] like ReLU, hyperbolic tangent are applied 

element-wise to the feature maps obtained from the convolutional layers. This introduces 

non-linearities into the network, allowing it to learn complex relationships and 

representations from the input data. 

4. Pooling Layers: Pooling layers down sample the feature maps by summarizing the 

information in local regions. Max pooling and average pooling are common pooling 

operations used in 1D CNNs. Pooling helps reduce the spatial dimensions of the feature 

maps while preserving the most important information, making the network more 

computationally efficient and robust to variations in the input data. 

5. Flattening: Following the convolutional and pooling layers, the resulting feature maps are 

flattened into a vector. This vector serves as the input to the subsequent fully connected 

layers. 

6. Fully Connected Layers: These layers process the flattened feature vector to make 

predictions or classifications. They learn complex combinations of features extracted by 

the convolutional layers and make decisions based on those features. These layers are 

often followed by activation functions. 

7. Output Layer: The output layer produces the final predictions or classifications. 

Depending on the task, it might consist of a single neuron for regression or multiple 

neurons with SoftMax activation for classification. 

The complete architecture of 1D CNN is presented in Figure 7. 

4.2 Basic Stress Assessment Model Architecture 

Having introduced the fundamental concepts of deep learning, it is essential to delve deeper 

into the specifics of the basic model. Afterwards, the limitations of the initial model are 

addressed, which prompts the creation of a more advanced model in the next chapter. The basic 

model is crucial as it lays the groundwork for the entire design. 
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Figure 7: 1D CNN Architecture 

4.2.1 Feature Encoders 

The feature encoders consist of a combination of CNN and LSTM architectures. This fusion 

of 1D CNN [36] and LSTM networks is particularly well-suited for processing both audio and 

IMU data due to their unique characteristics. 

1D convolutional layers excel at capturing local patterns within sequential data, making 

them highly effective for extracting features from the temporal structure present in both audio 

and IMU sensor readings. For instance, in audio data, CNNs can capture short-term audio 

features such as pitch, timbre, and temporal dynamics, by convolving over small segments of 

the audio waveform to identify patterns indicative of specific auditory characteristics. This 

allows CNNs to discern variations in sound intensity, frequency, and texture, enabling the model 

to detect environmental cues that may contribute to stress in bicyclists. Similarly, in IMU data, 

CNNs can identify patterns corresponding to specific movements or gestures over time, 

providing insights into the physical activities and interactions experienced by the cyclist. 

In contrast, LSTM networks are adept at modeling long-range dependencies and temporal 

dynamics within sequential data. In the context of bicyclist stress detection, LSTM can be 

particularly useful for analyzing audio data to capture nuances in environmental sounds that 

unfold over time. For example, LSTM can recognize patterns in the duration, frequency, and 
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intensity of sounds such as traffic noise, sirens, or construction activity, which may indicate 

stressful situations for bicyclists. Similarly, in IMU data, LSTM can capture complex movement 

patterns or gestures that evolve gradually, providing insights into the cyclist’s physical exertion, 

balance, and interaction with the environment. 

By combining CNNs and LSTMs, the model leverages the complementary strengths of both 

architectures, allowing it to effectively capture and represent the intricate temporal patterns 

present in both audio and IMU data. This synergistic approach enhances the model’s ability to 

extract discriminative features and achieve superior performance in tasks such as stress 

detection, where accurate representation of temporal dynamics is crucial. 

In this research, the IMU data is derived from a selection of six axes, specifically three axes 

from the accelerometer and three axes from the gyroscope, while the audio data remains 

unidimensional, representing amplitude variations. To handle the heterogeneity inherent in these 

data modalities, separate feature encoders are utilized to extract unimodal features. This 

approach ensures that distinct characteristics of IMU and audio data are effectively captured. 

Figure 8 demonstrates the architecture of audio and IMU feature encoders. 

Consider a dataset of N multimodal data samples, 𝑥 = {𝑥𝑖|𝑖 = 1, … , 𝑁} where each sample 

𝑥𝑖 = {𝑥𝑢
𝑖 , 𝑥𝑎

𝑖 } contains IMU data 𝑥𝑢
𝑖  and audio data 𝑥𝑎

𝑖 . Each 𝑥𝑖 is individually processed through 

unimodal feature encoders 𝑓𝑒𝑛𝑐.𝑢 (∙) for IMU data and 𝑓𝑒𝑛𝑐.𝑎 (∙) for audio data, generating 

separate representation vectors. Subsequently, a flattening operation is applied to both IMU and 

audio data representations, resulting in one-dimensional vectors denoted as ℎ𝑢
𝑖  and ℎ𝑎

𝑖 , 

respectively. Despite their one-dimensional nature, these vectors may differ in the number of 

hidden features they contain. 
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Figure 8: Feature Encoder Architecture (batch  size=100) 

4.2.2 Stress Classifier 

Two fully connected layers are integrated at the end of the feature encoders to serve as the 

cyclist stress classifier, which then undergoes supervised learning. The features obtained from 

various sensors are merged, denoted as 𝑐𝑖 = Concatenate (ℎ𝑢
𝑖 , ℎ𝑎

𝑖 ), and subsequently flattened 

and input into the classifier which is trained using the labeled source dataset. 
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Figure 9: Basic Cyclist Stress Model Architecture 

4.2.3 Training 

Figure 9 illustrates the architecture and the training process of the basic model. The labeled 

source dataset is collected from a bicycle simulator, as mentioned in the measurement study. 

The simulator provides a controlled environment where various cycling scenarios, including 

urban and rural road types, different weather conditions, and variations in traffic volume, can 

be simulated. While cycling, participants will interact with simulated environments and verbally 

report their perceived stress. These verbal accounts will be used as annotations for the sensor 

data. The basic model is trained using gradient descent [23] until the loss is minimized. 

4.2.4 Limitations of the Basic Model 

      We evaluate the basic model on testing datasets collected from both simulation and real-

world environments. Our observations reveal high accuracy on simulated data under various 

traffic conditions, contrasted with moderate accuracy on real-world datasets, as depicted in 

Figure 10. While the model demonstrates capability in recognizing patterns and making 

predictions based on provided features, it falls short of achieving high accuracy levels, especially 

in high traffic conditions. The primary reason for the low accuracy of the basic model is the 

significant domain gap between simulator and real-world data. Despite efforts to simulate 

various cycling scenarios, the controlled environment of the simulator may not fully capture 

real-world complexities such as environmental conditions, road surfaces, traffic interactions, 

and cyclist behaviors. For instance, in a simulator environment, a cyclist might experience an 

overall lower stress level compared to the stress experienced while riding on real streets due to  
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Figure 10: Basic Model Evaluation 

the controlled environment’s inability to replicate real-time traffic dynamics, unpredictable 

weather conditions, and interactions with other road users. This discrepancy hampers the 

model’s ability to adapt effectively to real-world scenarios, resulting in variations in stress 

perceptions. Consequently, concerns arise regarding the model’s reliability and applicability in 

real-world settings, where it may encounter scenarios and conditions unrepresented in the 

simulator data. Addressing the challenge of domain shift is crucial for enhancing the model’s 

generalization capabilities and ensuring its effectiveness in real-world applications. 
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Chapter 5: ADVANCED MODEL: CyclistAI 

5.1 Introduction 

As outlined in the limitations of the basic model, a model trained solely on simulation data 

cannot be directly applied to real-world cycling stress assessment due to inherent distinctions 

between controlled laboratory environments and real-world streets, which can lead to variations 

in stress perceptions. Therefore, to enhance performance, a comprehensive dataset 

encompassing both simulated and real-world cycling data is utilized for training. Acquiring 

simulation data is straightforward, as detailed in the measurement setup through a controlled 

bike simulation environment. Participants ride bikes with smartphones affixed to the handles, 

equipped with an app that records sensor readings. They verbally report their perceived stress 

level (low, medium or high) every 5 seconds, which is also recorded by the app and serves as 

labels for the simulated data.  

In the real-world data acquisition phase, using the same verbal reporting approach could 

divert the bicyclists’ attention, posing potential safety risks. Hence, participants are instructed 

to simply bike around the campus without verbally reporting their stress levels. Only unlabeled 

sensor data is collected via the smartphone app. It is important to note that collecting unlabeled 

data in real-world settings demands minimal effort from cyclists. 

Given the disparity between simulator and real-world data, it’s clear that directly merging 

labeled and unlabeled data lacks meaningful coherence. To address this, the advanced model 

adopts a novel approach at integrating the two modalities (audio and IMU) from different 

domains and translating these contextual measures into cyclist stress using domain adaptation 

[30]. Domain adaptation enables a deep learning model trained in a source domain (i.e., data 

collected in a lab environment) to adapt to a different but related target domain (i.e., real-world 

data). Building upon the foundational principles of the basic model, the advanced model, 

CyclistAI, is now introduced. 

 

5.2 Feature Encoders 

In the advanced model, the feature encoders remain the same as those used in the basic 

model. This ensures consistency in the initial processing stages, allowing for a seamless 
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transition between the two models while focusing on enhancing the model’s performance 

through domain adaptation and integration of real-world data. 

5.3 Projection Networks 

Projection networks [37] are employed to standardize the output features from different 

modalities to have uniform dimensions. This strategy enhances the model’s ability to process 

and analyze the diverse information sources, facilitating accurate representation and 

interpretation of the temporal dynamics present in both audio and IMU data. 

To address the differences in the number of hidden features between IMU and audio data, 

two multilayer projection networks composed of 1D convolutional layers, denoted as 𝑔𝑢(∙) and  

𝑔𝑎(∙), are utilized. These networks align the IMU and audio features to a common dimension. 

Additionally, both sets of features undergo normalization to maintain consistent dimensions, 

resulting in representations  and  that are positioned on a unit hypersphere. This 

harmonization process ensures that the diverse inputs from IMU and audio sources are 

appropriately prepared for subsequent operations. 

5.4 Contrastive Learning for Domain Adaptation 

To bridge the simulation-reality gap discussed above, it is framed as a domain adaptation 

problem [43] and addressed through contrastive learning. The feature encoders are denoted as 

𝑓𝜃𝑒𝑛𝑐(∙) with network parameters θ. The source dataset 𝐷𝑠 = {(𝑥𝑠
𝑖 , 𝑦𝑠

𝑖)}  represents simulation 

data, where 𝑥𝑠
𝑖  is the sensor data of the i-th sample with 𝑦𝑠

𝑖 as its label, denoting a discrete cyclist 

stress level from low to high. 𝐷𝑠 = {(𝑥𝑡
𝑖)} is the unlabeled target real-world dataset. The goal of 

domain adaptation is to obtain domain-invariant features using the target domain data 𝑥𝑡
𝑖  as 

input, employing 𝑓𝜃𝑒𝑛𝑐(∙) trained on 𝐷𝑠 ∪ 𝐷𝑇. 

5.4.1 Cross-Domain Contrastive Learning 

The goal of domain adaptation is to bring the feature distributions in the source and target 

domains into synchrony. Cross-domain contrastive learning aims to do this by combining 

features from samples belonging to the same class and separating features from samples 

belonging to distinct classes, irrespective of their domain of origin. The cross-domain 

contrastive learning loss function is now presented in order to accomplish this goal. 
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The first step involves fusing features from different sensor modalities, where 𝑟𝑖 =

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑧𝑢
𝑖 , 𝑧𝑎

𝑖 ) represents the fusion process. In the target domain, the fused feature 𝑟𝑡
𝑖  

is termed as the anchor, while the fused feature 𝑟𝑠
𝑝
 in the source domain with an identical label 

is referred to as a positive feature. Other samples in the source domain contribute to negative 

features  𝑟𝑠
𝑛. The cross-domain contrastive loss is then defined as: 

𝐿𝐶𝐷𝐶
𝑡,𝑖 = −

1

|𝑃𝑠(𝑖)|
∑ 𝑙𝑜𝑔

𝑒𝑥𝑝 (𝑟𝑡
𝑖 . 𝑟𝑠

𝑝
/𝜏)

∑ 𝑒𝑥𝑝 (𝑟𝑡
𝑖 . 𝑟𝑠

𝑛/𝜏)𝑛∈𝐷𝑠𝑝∈𝑃𝑠(𝑖)

   

Equation 1 

where i, p, and n denote the indices of fused features from different samples, 𝐷𝑠 ≡ {1,2, … , 𝑁𝑠} 

represents the set of source samples in a mini-batch, 𝑃𝑠(𝑖) ≡ {𝑝 ∈ 𝐷𝑠 ∶  𝑦𝑠
𝑝 = �̂�𝑡

𝑖} is the set of 

positive samples from the source domain sharing the same label with the anchor, and τ serves as a 

temperature factor modulating the influence of various samples [38]. This loss function enforces 

the intra-class distance to be smaller than the inter-class distance for samples from different 

domains, thus mitigating domain shift.  

Due to the lack of access to labels for target samples, estimated pseudo labels �̂�𝑡
𝑖 are used to 

generate pairs. In Equation 1, samples from the target domain are treated as anchor points. 𝐿𝐶𝐷𝐶
𝑠,𝑖

 

can be computed similarly, treating source samples as anchor points and setting, 𝑃𝑡(𝑖) ≡ {𝑝 ∈ 𝐷𝑡 ∶

 �̂�𝑡
𝑝 = 𝑦𝑠

𝑖}, where 𝐷𝑡 ≡ {1,2, … , 𝑁𝑡} is the set of target samples in a mini-batch.  

By merging 𝐿𝐶𝐷𝐶
𝑠,𝑖

  with 𝐿𝐶𝐷𝐶
𝑡,𝑖

, the cross-domain contrastive loss [54] is formulated as: 

𝐿𝐶𝐷𝐶 = ∑ 𝐿𝐶𝐷𝐶
𝑠,𝑖

𝑁𝑠

𝑖=1

+ ∑ 𝐿𝐶𝐷𝐶
𝑡,𝑖

𝑁𝑡

𝑖=1

 

Equation 2 

This loss facilitates bidirectional feature alignment by incorporating anchors from both domains, 

resulting in enhanced performance. The ultimate objective function for training is: 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝜃
𝐿𝐶𝐷𝐶(𝜃 ;  𝐷𝑠 , 𝐷𝑇) 

Equation 3 

where θ represents the parameters subject to optimization. 

5.4.2 Pseudo Label Assignment 

Due to safety concerns and the unavailability of cyclist stress level data in the real-world 

traffic dataset, pseudo labels are generated using K-means clustering [41] for pairing in cross-

domain contrastive learning [49, 50, 12, 13]. Unlike conventional K-means clustering, where 

cluster centroids are randomly selected, cluster centroids in the target domain are initialized to 

match those in the source domain. This initialization is based on the premise that source class 

prototypes serve as approximations of target class prototypes, owing to shared semantic 

information. As training progresses, this approximation is refined as samples within the same 

category align through cross-domain contrastive learning. Initially, source class prototypes are 

established by calculating centroids from source samples within each stress level. 

𝑂𝑡
𝑙 ← 𝑂𝑠

𝑙 = 𝐸𝑖~𝐷𝑆,   𝑦𝑠
𝑖 = 𝑙𝑟𝑠

𝑖  

Subsequently, to assign a pseudo label to each target sample, cosine similarity is employed 

to measure the distance between the target sample 𝑟𝑡
𝑖  and the l-th cluster center 𝑂𝑡

𝑙 . Following 

the clustering process, each target sample 𝑥𝑡
𝑖 is associated with a pseudo label �̂�𝑡

𝑖. To mitigate 

noise within the target pseudo labels, samples exhibiting ambiguity are excluded. Specifically, 

a target sample is discarded if the cosine similarity between its feature and its assigned cluster 

center falls below an empirical threshold d. 

5.5 Stress Classifier 

To build the cyclist stress model, two fully connected layers are attached at the end of feature 

encoders, and supervised learning is performed with using a small labeled real-world dataset 

𝐷𝑟. The labels denoted as 𝑦𝑟, are utilized along with the feature representations as inputs, as 

delineated in Algorithm 1. 

The classifier 𝑐𝑙𝑓 is responsible for predicting the stress level of cyclists based on the 

extracted features. To optimize the classifier’s parameters (𝜃𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟) for accurate stress 

predictions, the training process employs the cross-entropy loss function [45], a commonly used 
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metric in classification tasks. Cross-entropy loss quantifies the disparity between predicted 

probability distributions and true class labels, providing a measure of how well the classifier’s 

predictions align with the ground truth. In the context of multiclass classification tasks, the 

cross-entropy loss equation is expressed as: 

𝐿(𝑦, �̂�) = −
1

𝑁
∑ ∑ log (�̂�𝑖𝑗)

𝐶

𝑗=1

𝑁

𝑖=1

 

Equation 4 

where y represents the true label, �̂� is the predicted probability that sample i belongs to class j, 

N is the number of samples, and C is the number of classes. During training, the parameters of 

the classifier are iteratively updated using gradient descent, an optimization algorithm that 

adjusts the model parameters in the direction of the steepest descent of the loss function [23]. 

By minimizing the cross-entropy loss through gradient descent, the classifier learns to better 

differentiate between different stress levels, ultimately improving its performance in accurately 

classifying cyclists’ stress levels. 

 

Algorithm 1 Cyclist Stress Classifier Training 

 

1:  procedure CLASSIFIERTRAINING (𝐷𝑟, 𝜃𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟) 

2:              Load trained encoders 𝑓𝑎𝑢𝑑𝑖𝑜, 𝑓𝑖𝑚𝑢 with frozen weights 

3: Initialize classifier 𝑐𝑙𝑓 with random weights 

4:    for 𝑖 =  1 to 𝑁𝑟  do 

5: 𝑥𝑟
𝑖 , 𝑦𝑟

𝑖 ∈ 𝐷𝑟
𝑖  

6:  𝑎𝑟
𝑖 , 𝑢𝑟

𝑖 ← 𝑒xtract_features(𝑥𝑟
𝑖 ) 

7:   ℎ𝑎
𝑖

 ← 𝑓𝑎𝑢𝑑𝑖𝑜(𝑎𝑟
𝑖 ), ℎ𝑢

𝑖
 ← 𝑓𝑖𝑚𝑢(𝑢𝑟

𝑖 ) 

8:        𝑧𝑖  ←  𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (ℎ𝑎
𝑖
,  ℎ𝑢

𝑖
)) 

9:                   �̂�𝑖  ← 𝑐𝑙𝑓(𝑧𝑖) 

10:                 Compute 𝐿(𝑦𝑟
𝑖 , �̂�

𝑖) using Equation 4 

11:                 Update 𝜃𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  using gradient descent 

12:    end for 

13:  end procedure 
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5.6 System Architecture 

 

Figure 11: CyclistAI System Architecture 

Figure 11 depicts the system architecture of CyclistAI. The initial phase involves training 

the feature encoders using a labeled dataset from a cycling simulator and an unlabeled dataset 

collected from the real-world environment. Domain adaptation is achieved through contrastive 

learning using Algorithm 2. Now, the feature encoders yield domain invariant representations, 

directly utilized for downstream classification tasks. This decision stems from the observation 

that the representation before the projection captures more informative features than the 

projection output [37]. Consequently, projection networks are discarded, streamlining the model 

architecture and boosting computational efficiency. 

After the training phase, both the trained encoders and the trained classifier are exported to 

the ONNX format for deployment within the Android application in the final phase. During on-

device inference, the IMU sensor data and microphone data are directed to the encoders. The 

resulting feature representations are then passed into the classifier. The classifier is seamlessly 
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integrated with the interface, which visually presents the bicyclist’s stress level. In the 

experiment, the inference frequency has been set to one inference per 0.5 seconds. The inferred 

cyclist stress level is temporarily stored on the device and uploaded to the server when a stable 

network connection is detected. This stress is used to plot the cyclist stress heatmap as shown 

in Figure 12. 

 

Algorithm 2 Cross-Domain Contrastive Learning (CDCL) 

1:  procedure CDCL (𝐷𝑆 , 𝐷𝑇 , 𝑛𝑢𝑚_𝑒𝑝𝑜𝑐ℎ𝑠, 𝜃𝑎𝑢𝑑𝑖𝑜 , 𝜃𝑖𝑚𝑢 , 𝜃𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛) 

2:            Initialize encoder 𝑓𝑎𝑢𝑑𝑖𝑜, 𝑓𝑖𝑚𝑢 weights 

3:            Initialize projection network 𝑔 weights 

4:            Initialize cluster centers with source class prototypes 

5:          Initialize τ as the temperature factor  

6:            for 𝑒𝑝𝑜𝑐ℎ = 1 to 𝑛𝑢𝑚_𝑒𝑝𝑜𝑐ℎ𝑠 do 

7:                    𝐿𝐶𝐷𝐶 ← 0 

8:                    for 𝑖 =  1 to 𝑁𝑠  do 

9: 𝑎𝑠
𝑖 , 𝑢𝑠

𝑖 ← 𝑒xtract_features(𝑥𝑠
𝑖) 

10:                  ℎ𝑎
𝑖

 ← 𝑓𝑎𝑢𝑑𝑖𝑜(𝑎𝑠
𝑖 ), ℎ𝑢

𝑖
 ← 𝑓𝑖𝑚𝑢(𝑢𝑠

𝑖 ) 

11:                        𝑧𝑠
𝑖  ←  𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(ℎ𝑎

𝑖 ,  ℎ𝑢
𝑖 )) 

12:   𝑟𝑠
𝑖 ←  𝑔(𝑧𝑠

𝑖) 

13:                        Compute 𝐿𝐶𝐷𝐶
𝑠,𝑖

  for 𝑟𝑠
𝑖 anchor using Equation 1 

14:                  end for 

15:                  for 𝑖 =  1 to 𝑁𝑡 do 

16:                       𝑎𝑡
𝑖 , 𝑢𝑡

𝑖← 𝑒xtract_features(𝑥𝑡
𝑖) 

17:                       ℎ𝑎
𝑖

 ← 𝑓𝑎𝑢𝑑𝑖𝑜(𝑎𝑡
𝑖 ), ℎ𝑢

𝑖
 ← 𝑓𝑖𝑚𝑢(𝑢𝑡

𝑖 ) 

18:                        𝑧𝑡
𝑖  ←  𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(ℎ𝑎

𝑖 ,  ℎ𝑢
𝑖 )) 

19:                        𝑟𝑡
𝑖 ←  𝑔(𝑧𝑡

𝑖) 

20:                        Compute 𝐿𝐶𝐷𝐶
𝑡,𝑖

  for 𝑟𝑡
𝑖 anchor using Equation 1 

21: end for 

22:                  Compute batch LCDC using Equation 2 

23:                  Update parameters 𝜃𝑎𝑢𝑑𝑖𝑜 , 𝜃𝑖𝑚𝑢 , 𝜃𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛  using Equation 3 

24: end for 

25:  end procedure 
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Figure 12: Cyclist Stress Distribution Heatmap 
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Chapter 6: EVALUATION 

6.1 Experimental Setup 

For system development and conducting experiments, the following hardware and software 

were used: 

• Smartphone Application: 

OS: Android [46] 

Programming Language: Kotlin [47] 

Device specifications: Samsung Galaxy S10 smartphone with Octa-core Snapdragon 855 

CPU, 8GB of RAM and inbuilt IMU sensors and microphone. 

• Deep Learning Model: 

OS: Linux (Ubuntu 20.04) 

Programming Language: Python 

Deep learning framework: PyTorch [52] with CUDA acceleration 

GPU: NVIDIA Tesla V100-PCIE with 16GB RAM 

Supporting libraries: Numpy, Scikit-learn, Matplotlib, noisereduce, SciPy. 

Data Storage: Microsoft Azure cloud 

• Deploying DL model on Android: 

Framework: Open Neural Network Exchange (ONNX) [58] 



30 

 

6.2 Data Collection and Field Testing 

For the dataset collection for model training, a two-phase data collection campaign is 

executed. In the simulation phase, ten subjects participate in virtual bike riding across various 

scenarios, recording real-time stress levels at 5-second intervals. These scenarios include 

various road types such as urban, rural, and residential areas, different weather conditions like 

sunny, rainy, and foggy days, and varying traffic conditions with low, intermediate, and high 

volumes, along with different traffic light situations. Additionally, the presence or absence of 

bike lanes is also considered. Environmental cues are captured by an Android app through the 

smartphone’s IMU sensor and microphone. Safety measures involve dividing data collection 

into two 30-minute sessions per participant with breaks and health monitoring. Participants also 

complete the simulator sickness questionnaire [53] during each session. 

In the real-world phase, twenty subjects utilize the smartphone app during a 30-minute bike 

ride, resulting in a 10-hour real-world riding dataset. Unlike the simulation phase, stress levels 

are not reported in the real-world setting, facilitating convenient data collection during daily 

activities. 

 

Figure 13: Smartphone Setup on Bike for Data Collection 

To evaluate CyclistAI’s real-world performance, field testing is conducted with twenty 

participants engaging in on-road biking sessions along their usual routes. They provide real-

time stress level reports used as labels. To minimize distractions, participants do not manually 

input or visually shift their focus. Stress labels are recorded by a separate phone mounted on the 

bike’s handlebars, extracted from audio and IMU sensor recordings. 
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6.3 Evaluation metrics 

To thoroughly assess CyclistAI, a range of evaluation metrics is employed. These include 

accuracy, which measures the ratio of correct predictions to total samples, offering an overview 

of model effectiveness. Root Mean Square Error (RMSE) calculates the average prediction 

error, with a focus on larger errors. The F1 score considers both positive and negative samples, 

particularly in multi-class classification tasks where negative samples represent instances not 

belonging to the class, using a one-vs-rest strategy. The Receiver Operating Characteristic 

(ROC) curve plots the true positive rate against the false positive rate, providing insights into 

the model’s performance across different thresholds. The Area Under the ROC Curve (AUC) 

quantifies the overall performance of the model in distinguishing between classes. This 

comprehensive set of metrics aids in evaluating CyclistAI across various aspects of its predictive 

capability and robustness. 

 

Figure 14: Confusion Matrix of Stress Levels 

6.4 System Performance 

Figure 14 illustrates the confusion matrix showing the correspondence between ground truth 

and predicted results. Each row corresponds to a ground truth class: low, medium, and high 

stress levels, respectively, while each column represents a predicted class. The diagonal line 

indicates the success rate for predicting each class. CyclistAI demonstrates a promising success 
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rate ranging from 89% to 92%. Additionally, similar prediction performance is observed across 

all classes, highlighting the stability of CyclistAI. 

Next, evaluating the robustness of CyclistAI under cross-domain settings involves 

investigating its performance across subjects and various environments. 

6.4.1 Subject-based Robustness Analysis 

 

 (a) Accuracy (b) RMSE 

Figure 15: Subject-based Robustness Analysis 

Subjects exhibit a wide range of understanding and interpretation when it comes to stress. This 

prompts an intriguing inquiry into the applicability of CyclistAI across diverse user profiles. To 

delve into this matter, CyclistAI is put to the test across twenty subjects in real-world scenarios. 

Figure 15 provides a visual representation of the accuracy and RMSE on a per-subject basis. 

The accuracy spans from 84.3% to 93.2%, showcasing consistency across a spectrum of 

subjects, with a standard deviation of 2.9%. However, a closer look reveals a relatively higher 

RMSE, suggesting a tendency for CyclistAI to generate predictions with larger errors for 

specific individuals. Despite this, the overall accuracy remains robust, attributed to the 

correlation between environmental cues and a cyclist’s stress levels. This underscores the 

adaptability of CyclistAI across varied user profiles. 
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6.4.2 Environmental Robustness Analysis 

Environmental conditions significantly influence how cyclists perceive stress. Considering 

this, in-field testing examines three variable factors: time of day, weather conditions, and type 

of location. Each factor is studied independently while keeping the others constant. Table 1 

showcases CyclistAI’s performance across various environmental settings. The most 

challenging scenario occurs on urban roads, characterized by the presence of numerous objects 

such as pedestrians, traffic signals, vehicles, and road signs. However, 

CyclistAI consistently maintains high accuracy, surpassing 84% across all settings. This 

sustained high performance underscores CyclistAI’s effectiveness, especially when trained with 

cross-domain contrastive learning aided by a bike simulator, enabling it to seamlessly integrate 

information from diverse real-world environments post-training. 

 

Table 1: Environmental Robustness Analysis 

Metric Time of Day Weather Condition Location Type 

Day Night Sunny Cloudy Rainy Campus Residential Urban 

Accuracy 0.92 0.87 0.90 0.89 0.87 0.88 0.93 0.84 

RMSE 0.30 0.54 0.26 0.29 0.54 0.32 0.26 0.44 

F1 Score 0.91 0.91 0.94 0.93 0.90 0.88 0.91 0.87 

AUC 0.97 0.89 0.93 0.96 0.92 0.92 0.94 0.90 

 

6.5 Comparison with Prior Approach 

To illustrate the superiority of CyclistAI, a comparison was conducted with a state-of-the-

art solution utilizing bio signals such as heart rate (HR) [57] and respiration rate (RR) [56] for 

predicting cyclist stress. Employing a support vector machine [55] classifier trained on a dataset 

incorporating HR and RR measurements collected during in-field testing, ROC curves were 

generated for both CyclistAI and the baseline model. The ROC curve of CyclistAI demonstrates 

a higher true positive rate with a steeper shape, suggesting superior performance. Additionally, 

CyclistAI achieves a relatively larger area under the curve (AUC) of 0.95 compared to the 

baseline’s 0.82, as shown in Figure 16a, indicating a notable performance advantage. 
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(a) ROC (b) Accuracy 

  

  

(c) RMSE (d) F1 Score 

Figure 16: Comparison of CyclistAI with Baseline 

To further assess the effectiveness of CyclistAI, an examination of its performance metrics 

- accuracy, RMSE, and F1 score - across different traffic conditions was conducted. This 

analysis is presented in Figures 16b, 16c, and 16d. The following observations were made: 

1. Consistent outperformance of the baseline method was observed by CyclistAI, showing 

higher accuracy and F1 scores while maintaining lower RMSE values across all traffic 

conditions. 
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2. Regardless of traffic volumes, stable prediction performance was demonstrated by 

CyclistAI, with a narrow standard deviation in accuracy (ranging from 2.5% to 3.9%). In 

contrast, more variability in performance metrics across different traffic scenarios was 

exhibited by the baseline method. 

3. Particularly in heavy traffic situations, significant superiority over the baseline method 

was shown by CyclistAI, with a 32% increase in accuracy, along with reductions of 0.22 

in RMSE and 0.10 in F1 score. This superiority can be attributed to the effective 

interpretation of subtle environmental cues associated with the stress levels by CyclistAI, 

which proved challenging for the baseline method. 
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Chapter 7: CONCLUSION AND FUTURE WORK 

This project introduces CyclistAI, a pioneering model aimed at efficiently assessing cyclist 

stress by leveraging smartphone sensors. Integrating Convolutional Neural Networks and Long 

Short-Term Memory networks, CyclistAI translates environmental stimuli into quantifiable 

stress levels. The dataset utilized for training encompasses various traffic scenarios, including 

data from both a meticulously designed bike simulator and real-world observations. To bridge 

the simulation-to-reality gap, this study incorporates domain adaptation technique alongside a 

robust contrastive learning framework. By leveraging a combination of simulated and real-world 

data for training, CyclistAI is optimized to perform effectively in real-world scenarios, 

enhancing its overall performance and applicability. 

Through extensive experimentation and thorough baseline comparisons, CyclistAI 

demonstrates promising capabilities in accurately gauging cyclist stress levels. Furthermore, this 

project sheds light on the implications of CyclistAI in enhancing cyclist safety and urban 

planning strategies by providing actionable insights derived from real-time stress assessments. 

For future work, various possibilities present themselves. Firstly, enhancing the energy 

efficiency of the data acquisition process remains a crucial area of exploration. Implementing 

advanced techniques to optimize smartphone power consumption while maintaining accuracy 

will be pivotal for the widespread deployment of CyclistAI in real-world settings. Additionally, 

further investigation into the integration of additional sensor modalities, such as GPS or heart 

rate monitors, could provide richer data inputs for more comprehensive stress assessment. 

In conclusion, this project lays the groundwork for a novel approach to cyclist stress 

assessment with CyclistAI. By addressing key challenges and showcasing promising results, it 

sets the stage for future research endeavors aimed at advancing the field of humancentric 

computing and urban mobility solutions. 
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Appendix A: 
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Appendix B: Technology Transfer  

An Appendix should be included in this final report to document the Technology Transfer 

activities conducted during the project term, accomplishments towards T2 adoption and 

implementation by relevant stakeholders, as well as any relevant post-project T2 plans.  
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The project "Assessing Cyclist’s Stress on A Large-Scale: A Practical Smartphone-Based Data-
Driven Approach" presents a highly innovative and practical solution for cyclist stress 
assessment, combining smartphone sensing and advanced deep learning models. By relying on 
widely accessible smartphone sensors, such as the IMU and microphone, the project introduces a 
cost-effective and accessible approach that doesn’t require specialized equipment, making it 
highly practical for large-scale deployment. 
 
The project also showcases its broader potential impact through its proposal to aggregate 
individual stress assessments into visualized stress distribution maps. This has significant 
implications for urban planning and infrastructure development, as city planners could use these 
maps to identify high-stress areas and prioritize improvements, such as adding bike lanes or 
reducing traffic congestion. The research outcome could contribute to creating safer, more 
cyclist-friendly cities, thus encouraging more people to adopt cycling as a mode of 
transportation, which in turn promotes sustainability, public health, and environmental benefits. 
 
Overall, this project represents a pioneering effort with far-reaching potential to not only 
improve cyclist safety and well-being but also support cities in developing more sustainable 
transportation systems. The project’s approach could easily be adapted to other forms of 
transportation or stress-related assessments in various urban contexts. 
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Overall Evalua*on: 
 
The project offers a strong technical contribu*on to the field of cyclist stress assessment by 
developing a scalable, real-*me system that leverages deep learning and smartphone sensors. 
The robustness of the system across different environments and the use of domain adapta*on 
techniques are key strengths that set this work apart. In the mean*me, this project may 
consider enhancing privacy and discussing long-term deployment considera*ons to fully realize 
the system’s poten*al in real-world applica*ons.  
 
 
 
Strengths: 
 
The development of CyclistAI presents a highly innova*ve solu*on by leveraging widely 
available smartphone sensors to assess cyclist stress. This approach is prac*cal, scalable, and 
offers a cost-effec*ve alterna*ve to more expensive physiological measures, which are oKen 
limited in large-scale deployments. 
 
The model's ability to provide real-*me stress assessments is a major advantage over tradi*onal 
methods that rely on retrospec*ve data (such as self-report surveys). This improvement 
addresses recall biases and allows for a more accurate capture of cyclists' immediate 
experiences. 
 
The combina*on of CNN and LSTM for feature extrac*on and temporal analysis reflects a well-
considered approach to processing sensor data. The report offers clear technical jus*fica*ons 
for using these architectures, highligh*ng their strengths in detec*ng paSerns in both IMU and 
audio data. 
 
The report provides a thorough evalua*on of CyclistAI across different traffic environments, 
weather condi*ons, and *me of day. The analysis is supported by key metrics such as accuracy, 
F1 score, and RMSE, which helps validate the robustness of the model in real-world scenarios. 
 
 
 
 
Sugges*ons for improvements: 
 
Discuss how CyclistAI can safeguard the privacy of users, especially regarding audio and loca*on 
data. Including privacy-preserving techniques such as differen*al privacy or on-device 
encryp*on would help alleviate poten*al user concerns. 
 
Include considera*ons for energy-efficient data collec*on and long-term usability of the 
applica*on. This would ensure that the system remains prac*cal for daily use without 
significantly draining smartphone baSeries. 
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Re: Review request for CTEDD-supported project “Assessing Cyclist’s Stress on A Large-Scale: A 

Practical Smartphone-Based Data-Driven Approach” 

 

The CTEDD-supported project titled “Assessing Cyclist’s Stress on A Large-Scale: A Practical 

Smartphone-Based Data-Driven Approach” develops CyclistAI, a novel system to assess cyclist 

stress levels using smartphone sensors (IMU and microphone) combined with deep learning techniques. 

The aim is to create a scalable, real-time assessment model that leverages Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory (LSTM) networks to analyze contextual data from the 

cycling environment, including traffic and road conditions. The system addresses existing limitations in 

cyclist stress assessments, such as the impracticality of current frameworks and the challenges in real-

time data collection. The report also highlights the use of domain adaptation to overcome the gap 

between simulation and real-world data for training, using contrastive learning techniques. CyclistAI is 

tested on both simulation and real-world datasets, achieving high accuracy and demonstrating robustness 

across different traffic and environmental conditions. The idea of aggregating stress assessments into a 

visualized stress map is both innovative and practical. This has clear implications for urban planners, 

allowing them to use real-time data to improve cycling infrastructure and promote safer cycling 

environments. 

 

As a potential future direction, the researcher team may consider exploring integration with wearable 

technologies to provide more comprehensive insights into cyclist stress.  

 

 

 
 

Wei (Lisa) Li, Ph.D. 

Associate Professor 

Associate Director of Graduate Studies 

Department of Computer Science 

Georgia State University 

 


	Assessing Cyclist’s Stress on A Large-Scale: A Practical Smartphone-Based Data-Driven Approach
	FINAL PROJECT REPORT
	Abstract
	LIST OF FIGURES
	LIST OF TABLES
	Chapter 1: INTRODUCTION
	Chapter 2: RELATED WORK
	Chapter 3: BACKGROUND AND MEASUREMENT STUDY
	3.1 Background
	3.2 Measurement Study
	3.2.1 Measurement Setup
	3.2.2 Statistical Analysis
	3.2.3 Data Collection in Simulation Environment


	Chapter 4: BASIC CYCLIST STRESS ASSESSMENT MODEL
	4.1 Deep Learning
	4.1.1 Artificial Neural Networks (ANNs)
	4.1.2 Long Short-Term Memory (LSTM)
	4.1.3 Convolutional Neural Networks (CNN)
	4.1.4 1-Dimensional Convolutional Neural Networks (1D CNN)

	4.2 Basic Stress Assessment Model Architecture
	4.2.1 Feature Encoders
	4.2.2 Stress Classifier
	4.2.3 Training
	4.2.4 Limitations of the Basic Model


	Chapter 5: ADVANCED MODEL: CyclistAI
	5.1 Introduction
	5.2 Feature Encoders
	5.3 Projection Networks
	5.4 Contrastive Learning for Domain Adaptation
	5.4.1 Cross-Domain Contrastive Learning
	5.4.2 Pseudo Label Assignment

	5.5 Stress Classifier
	5.6 System Architecture

	Chapter 6: EVALUATION
	6.1 Experimental Setup
	6.2 Data Collection and Field Testing
	6.3 Evaluation metrics
	6.4 System Performance
	6.4.1 Subject-based Robustness Analysis
	6.4.2 Environmental Robustness Analysis

	6.5 Comparison with Prior Approach

	Chapter 7: CONCLUSION AND FUTURE WORK
	REFERENCES


Accessibility Report

		Filename: 

		CTEDD 022-03 Final Report.pdf



		Report created by: 

		McEachern, Hunter

		Organization: 

		



 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 5

		Passed: 21

		Failed: 4



Detailed Report

		Document



		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Skipped		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content



		Rule Name		Status		Description

		Tagged content		Skipped		All page content is tagged

		Tagged annotations		Skipped		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Skipped		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms



		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text



		Rule Name		Status		Description

		Figures alternate text		Failed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Failed		Other elements that require alternate text

		Tables



		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists



		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings



		Rule Name		Status		Description

		Appropriate nesting		Failed		Appropriate nesting




Back to Top